
Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 5/133

Analysis

Project Background

In the last few months, I have been getting into an advanced computing and electronic
engineering hobby: high altitude ballooning. This involves sending a balloon with a payload
attached containing a microcontroller (in my case, a Raspberry Pi Zero), a low power UHF
radio, a GPS module and a camera. The Pi is programmed to take pictures at regular
intervals and transmit both the images and the GPS data (telemetry) down in order to aid
tracking and recovery of the payload. The software I developed and used for my first 3
flights can be seen here: https://github.com/Abrasam/SKIPI-Launch-1 and here:
https://github.com/Abrasam/SKIPI2. Below is a data-flow diagram for the current system.

Radio
Transmitter

GPS

Camera

Transmit
Pi

Generate
telemetry string

Receive
Computer

Radio
Receiver

Decode

Habhub
servers

Location

Location
Time

Telemetry
string

Te
le

m
et

ry
 s

tr
in

g

RTTY
Telemetry
string

Te
le

m
et

ry

st
ri

ng

Airborne Payload

Ground Station
Figure 1 - DFD diagram for the current system, note the lone one-way RTTY link between the airborne

payload and the ground-based station; there is no capacity for uplink.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 6/133

Project Outline

As described previously, there is only one-way communication occurring between the
payload and the receiver and if something goes wrong, then there is very little that can be
done about it, furthermore, it means that the information which comes down from the
payload is very specific and limited and all diagnostic data must be predefined when
creating the payload’s telemetry format. For my project, I want to create a prototype piece
of software which allows two-way communication with and control of an airborne high
altitude balloon payload for use by UKHAS (UK High Altitude Society) members, myself
included. I have used two methods of communicating with the receiver on the ground, they
are described in the research section. My clients for this project are members of the UKHAS
who fly High Altitude Balloons (HABs) as a hobby. We have several pieces of software which
are used by members, and this software is intended to be an addition to our suite of HAB
utilities. I intend to use a Raspberry Pi as the microcontroller for my payload, I could use an
Arduino, however, the Raspberry Pi camera module makes the Pi an attractive piece of
hardware for HAB, as well, it gives me more freedom of programming language.

Client

As noted above, my intended clients are members of the UKHAS who will be the principle
users of this software. One member of the UKHAS, David Akerman, has agreed to answer
questions via email and provide technical advice with regards to the hardware
implementation.

Figure 2 - Email from David Akerman, member of the UKHAS, amateur radio operator and embedded systems programmer.

IR2030 is the document published by Ofcom noting what radio frequency bands are available for license -free use.

Dave comments on the fact that the payload will have a large listening footprint and as such
will be receiving lots of other transmissions, meaning that our transmissions may require
higher power in order to be received over the noise. I will discuss potential frequencies to
use which are license-exempt in the next section. Dave also suggests that I use a LoRa
transceiver (see research for more information) and that I choose my parameters wisely to
maximise range. Dave points out that 434MHz and 868MHz are harmonically related (these

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 7/133

are the two frequencies frequently used by HAB enthusiasts and are the two frequencies
which LoRa modules operate on). I will discuss Dave points more in research.

Research

Radio Communications

The first method of communication I have used is RTTY or Radio Teletype which is an old
protocol initially developed for the teleprinter, which works by simply shifting frequency up
and down to correspond to binary 1 and binary 0, this is done by applying a small voltage to
one of the pins on the radio. These voltage changes must be timed accurately, but as the Pi
doesn’t have a real time OS, the best way to achieve this was using the Pi’s RS-232 (a
standard for asynchronous serial communications) serial interface (and thus connecting the
Pi’s Tx (see fig. 3) pin to the radio’s pin). This runs at 75-100 baud robustly and could be
pushed to 300 but is then significantly susceptible to interference, so this means a maximum
usable downlink bitrate of 300bps, as I have only one bit encoded per state change. This
rate is unfeasible for two way communications and additionally, automatic detection and
decoding of RTTY is difficult to achieve reliably, even when receiving transmissions during a
normal flight I typically receive errors on at least 20% of packets, this is significantly too high
to be useful for 2-way communications, particularly of telnet style communication is
desired.

Figure 3 - Image showing the pin layout of a Raspberry Pi Zero, the TXD0 pin is used to communicate with the NTX2B (RTTY)

radio as well as the GPS, the RXD0 is also used to communicate with the GPS. The SPI_MOSI, SPI_MISO, SPI_CLK and
SPI_CEO_N pins are used for the LoRa radios, described in the paragraph below.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 8/133

The second method of communication is LoRa which is a long range, low power, high data
rate radio solution also running at a license exempt frequency. The LoRa modules are low
cost and are controlled with an SPI (Serial Peripheral Interface, a synchronous serial
communication protocol) interface and provide state change notifications via DIO (Digital
Inout/Output, a simple protocol whereby a line can have either a HIGH or a LOW signal to
denote binary flags). Their modulation and demodulation is handled internally as the
modulation scheme is patented. The modules are capable of achieving an equivalent of
17,000 baud RTTY (see figure 4), making them ideal for long range 2-way communications.
Their range is somewhere in the region of 60-100km, which is perfectly adequate for high
altitude ballooning, this is somewhat lower than the RTTY which can reach 600km and more
with perfect conditions, however, we do not need that extra range.

Figure 4 - Shows nominal bitrate vs bandwidth. Bitrate can be further optimised with modification to spreading factor and

error coding rate. Taken from the LoRa module datasheet.

Thus far I have flown three flights, all of which have used the RTTY and two of which have
used the LoRa radios, in order to use the RTTY I used a cheap Radiometrix NTX2B radio (see:
http://www.radiometrix.com/files/additional/NTX2B.pdf) which shifts frequency as a result
of a voltage applied to one of its pins, however, the Pi outputs 3.3v which would result in a
frequency shift of about 7kHz, this is far too large as it is outside the range of typical SDR
(software defined radio, a USB radio receiver) receivers, so a potential divider was needed
to lower the voltage to about 0.2v-0.3v to acquire a shift of around 400-500Hz, a graph of
frequency shift against voltage applied to TXD pin is shown in fig. 4. Furthermore, the LoRa
modules were very successful, I used a Python library designed for a similar module which
worked well, however, in this project, I will want to develop my own wrapper and API for
the LoRa radios which will be more robust than the library I used before, and will handle the
SPI and DIO interfaces itself, while providing me with a self-documenting API for use
throughout the rest of the programming and possibly publication as a stand-alone LoRa API.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 9/133

Figure 5 - The above graph shows the frequency shift (kHz, y-axis) vs the voltage applied to the radio’s Tx pin (V, x-axis).

Sourced from the UKHAS website.

Due to Ofcom regulations, I am restricted to specific power outputs and frequency bands as
I do not hold an amateur or commercial radio license. Therefore, I must use license-exempt
bands and adhere by any specific rules in those bands. There is a 434.04-434.79MHz band
which I have used for RTTY, this has a power output limit of 10mW E.R.P. (effective radiated
power – this takes into account the antenna gain (amplification by the antenna)); a band at
869.70-870.00MHz which has a power output limit of 5mW E.R.P. which I will use for the
868MHz LoRa downlink from the payload. These bands are useful due to their 100% duty
cycle, meaning I can transmit continuously, and their lack of requirement for techniques to
mitigate interference such as “Listen Before Talk” which could inhibit some of my
communications. However, there is another band, 869.40-869.65MHz which allows 500mW
transmissions with a duty cycle limit of 10%, this could be used for the uplink as I am only
likely to be transmitting to the payload for a small amount of time compared to the time
during which the payload will be transmitting to me and thus I could easily manage with
10% duty cycle, this would provide a much greater signal strength for transmissions to the
airborne payload, it would be much less susceptible to interference. The table in figure 5
shows the available bands that are suitable for this project.

Frequency (MHz) Power Limits (mW) Other Requirements
869.40-869.65 500 Duty cycle limit of 10%.
869.70-870.00 5 None.
434.04-434.79 10 Channel spacing ≤ 25kHz
Figure 6 - Summary of frequency bands which could be useful for my project. Sourced from the Ofcom IR2030 table of
license-exempt frequency bands in the radio spectrum, available at:
https://www.ofcom.org.uk/__data/assets/pdf_file/0028/84970/ir_2030-june2014.pdf

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 10/133

The LoRa module requires a detailed understanding of its interface. The datasheet
(http://www.hoperf.com/upload/rf/RFM95_96_97_98W.pdf) describes the SPI and DIO
(Digital Input/Output) interface it uses. SPI is a synchronous serial communication interface
used primarily in embedded systems; it has a master-slave architecture with a single master
and can operate in full-duplex mode; it supports multiple slaves when separate slave-
selection lines are used. The SPI is used to modify the registers on the radio, in order to
configure the radio (e.g. frequency, spreading factor, operation mode etc.) or, indeed, to
write the packet that is to be transmitted to the appropriate register or to read a received
packet from the appropriate register. Modulation, demodulation, receiving and
transmission of packets is handled internally as the methods used are patented. The DIO is
used to notify the interfacing device, in my case a Raspberry Pi, when specific events occur
(see fig. 6 for functionality of each pin), in my case I will be using the DIO0 and DIO5 pin,
they function as follows: the DIO0 pin can be configured to change state to HIGH (1) when a
transmission has finished sending or receiving (TxDone or RxDone), while the DIO5 pin can
be configured to change state to HIGH (1) when the radio has changed operation mode
(ModeReady, i.e. changing from transmit to standby mode). My software will need to use
both SPI and DIO so I propose that I use a library such as WiringPi or Pi4J to do this. WiringPi
has implementations in many languages and Pi4J is a Java based library, as the name ‘Pi 4
Java’ suggests; however, there are many other options such as spidev in Python which is an
excellent library which I have experience developing with.

Figure 7 - Table showing the functions of the individual DIO pins. Taken from the datasheet.

The LoRa SPI interface works in the following way: each register on the LoRa module is
assigned a unique address of up to 7 bits, to write to or read from a register you must send
a sequence of bytes via SPI to the radio, the least significant bits of the first byte will be the
register’s address, the most significant bit is 1 when writing and 0 when reading. Then, if
writing, you send the bytes you wish to write in the order you wish then to be written (if you
send more bytes than the register can hold it will ignore the excess); if reading you must
send the n 0x00 bytes where n is the number of bytes you wish to read from the specified
register, again, if you specify more bytes than the register contains it’ll just stop once it’s
read the whole register. This gives a sufficient knowledge of the SPI interface for this
project, for more information see the aforementioned datasheet.

GPS

I will need a GPS module on my payload, however, due to the COCOM limits (see
https://en.wikipedia.org/wiki/CoCom), which prevent a GPS from functioning if it is above
18,000m altitude or travelling faster than 1,000 knots in order to prevent GPS technology
being used to guide inter-continental ballistic missiles (this limitation is an artefact of the
Cold War), I have to purchase a specialist GPS module which instead requires both high

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 11/133

altitude and high speed to shut down rather than just one of the two. There are several
options and all have a serial interface running at 96,000 baud by default, this will require
usage of the Pi’s RS232 serial connection to read continuously from the GPS. Alternatively, I
could use an I2C interface which many of the GPS modules provide; however, the Ublox GPS
modules (which is the most popular type with HAB enthusiasts) perform clock stretching at
arbitrary times and the Pi I2C driver simply cannot handle this. I should note that the GPS
also outputs several different types of location strings in a looping sequence, all the output
types can be seen on http://www.gpsinformation.org/dale/nmea.htm but we are only
interested in GGA strings, which give a 3D position (i.e. including altitude) and the number
of satellites the GPS is currently in contact with. These give latitude and longitude in the
form ddmm.mmmm where dd is the number of degrees and mm.mmmm is the number of
arc minutes as a decimal. So, to convert to degrees correctly, which most mapping systems
use you must use the following equation:

coordinate degrees = 𝑑𝑑 +
𝑚𝑚. 𝑚𝑚𝑚𝑚

60

Additionally, the GPS doesn’t give the correct negative values, it instead gives another field
saying whether the position given is North/South of the equator for latitude or West/East of
the Greenwich Meridian for longitude so these fields will need to be checked and the
correct negative sign will need to be applied to the latitude and longitude values .

I should also note that the GPS doesn’t by default work at high altitudes, by default it
adheres to the standard CoCom limits, a sequence of bytes must be sent to it in order to
switch to ‘Airborne Mode’, the required bytes are as follows:

[0xB5, 0x62, 0x06, 0x24, 0x24, 0x00, 0xFF, 0xFF, 0x06, 0x03,
0x00, 0x00, 0x00, 0x00, 0x10, 0x27, 0x00, 0x00, 0x05, 0x00,
0xFA, 0x00, 0xFA, 0x00, 0x64, 0x00, 0x2C, 0x01, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x16, 0xDC]

Server and Slave Network

As I have stated, I have flown flights using both LoRa and RTTY transmission methods and
have gained an understanding of their function and implementation through building and
programming the payloads for these flights. I’ve also seen that when chasing a payload, it is
quite easy to lose contact with it temporarily due to, for example, an inconvenient road
route or a building breaking line of sight, and at these times I’ve previously relied on other
enthusiasts (members of the UK High Altitude Society) to receive the transmissions using
their high gain stationary antennas based around the country. In order for my 2-way
communication system to function consistently, through signal dropouts with the payload, I
suggest that I need to harness the many willing enthusiasts across the country who would
be happy to assist in tracking. So, I propose the development of a slave tracking software
that acts to rebroadcast transmissions that do not successfully reach the payload when
transmitted by the main controller and to forward any transmissions received by the
payload to a central server (the function of this server is described below). Figure 7 below
shows a map of UKHAS listening stations recently active, as you can see there are many

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 12/133

receivers across the country, massively increasing listening and transmitting capacity if they
can be harnessed! I will suggest this to members of the UKHAS.

Figure 8 - Map of UKHAS receiving nodes active recently. Screenshot from the UKHAS tracker (https://tracker.habhub.org/).

Potential Radio Solutions

Parallel

My software could work my transmitting packets to the payload on one LoRa radio, and
from the payload on another LoRa radio running at a different frequency. Having two radios
operating simultaneously at different frequencies would allow us to maintain 100% duty
cycle on both transmit and receive operations in order to maximize efficiency, rather than
having to wait for a cycle to complete. Note that although in my implementation I would
most likely be using 434MHz for uplink and 868MHz for downlink, the frequencies should be
configurable by the end user in a configuration file, so if they wanted to use two 868MHz
radios with lower bandwidths or one 868MHz and one 434MHz then they should be able to
by modifying a configuration file. However, there are problems with having two radios
operating simultaneously, particularly as the two frequencies available to the LoRa radios
are harmonically related which would result in significant interference, potentially
preventing any communication from functioning correctly.

Cycled

Alternatively, I could use only one transceiver and switch between receive and transmit
regularly, this would reduce responsiveness for the 2-way communications, but make it

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 13/133

more robust and less likely to be affected by interference. Note that my implementation
should be fully configurable allowing users to use different frequencies and different cycles
of uplink and downlink. This would mean that I would need to configure a cycle where the
airborne payload spends some time transmitting, then transmits a packet informing the
ground-based device that it is now accepting packets, waits to receive packets, and then if
no packets are received for some defined period of time, begin transmitting for a while
again. The ground based receiver would need to be configured to receive packets and then
upon receiving a packet that states that the transmitter is going into receive mode, transmit
any packets that are queued for transmission.

Further Client Discussions

Radio Solutions

As mentioned the UK High Altitude Society (UKHAS) is a group of enthusiasts who fly high
altitude balloons, of which I am a member. We have a suite of software called habitat which
allows data received by numerous receivers to be forwarded to a central server and
displayed on a map. I would like for location data received from my payload to be relayed to
habhub. My project will be targeted at myself and other members of the UKHAS. Further, in
order for the slave transceiver network to function correctly, I would need to develop my
own central server software which coordinates the slave node network and logs flight data
for my own records, this would be developed with the overall aim in mind for it to be
eventually integrated into the habhub habitat software suite. The central server could also
function to ensure that the main controller is forwarded any packets from the payload
which it does not receive itself which are, however, received by the army of slaves.

I have been discussing this project with members of the UKHAS and have made many of the
decisions noted in this section and below in the specification with their interests in mind, as
they are my principle clients. I had some discussions with members of the UKHAS on the
#highaltitude IRC channel on Freenode, I discussed the advantages and disadvantages of
having two LoRa radios in parallel and of using just one with a cycle of transmit and receive.
I have reached the conclusion that it would be more suitable to use just one radio with a
cycle of transmit and receive, with both queuing packets for transmission while unable to
transmit (as they’re in receive mode). Several members of the UKHAS were concerned
about the interference due to having the two radios simultaneously transmitting and
receiving while adjacent to each other and most were unconcerned about the slight delay
that would be caused by having to queue packets for transmitting while in receive mode.
See fig. 9 for transcript of IRC.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 14/133

Figure 9 - Transcript of IRC chat with members of the UKHAS.

Two Way Protocol

I discussed my concept for my protocol specification with the UKHAS on IRC, the log is in
figure 10, we discussed the network of slave receivers and it was suggested that the system
be coordinated so that only one node is transmitting at any given time, this is what I had
suggested above in my research. When discussing the protocol, I suggested a system where
the payload transmits to say it is entering into receive mode and then begins to listen, then
the ground station begins transmitting and when the ground station has not transmitted
anything for a given time the payload returns to transmit mode and then processes the
received packets; members of the UKHAS suggested that I expand upon this with something
similar to the sliding window protocol used in TCP, this is where each packet has a
consecutive number and the receiver uses the numbers to put the packets in the correct
order, detect duplicates and detect missing packets; the sliding window protocol puts a limit
on the number of packets that can be transmitted in a given time by limiting the number of
packets that are sent before waiting for an acknowledgement (source:
https://en.wikipedia.org/wiki/Sliding_window_protocol). Although this will not exactly be
used in my implementation, it would be suitable to limit to a set number of transmissions
per transmit cycle to prevent any cycle continuing for too long. I do not think that sending
NACK (negative-acknowledgement) packets or ACK (acknowledgement) packets will be
appropriate for my implementation, ACK packets would be inappropriate because I am
running on an unreliable and slow medium and this would result in having to send an extra
packet for each packet, NACKs would still be inappropriate because the number of packets
transmitted in a cycle will not necessarily be fixed.

Members of the UKHAS expressed concern that others could attempt to enact remote
control operations on the payload, a proposed solution to this is described later (see
‘Authentication’).

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 15/133

Figure 10 - IRC log of discussions about the network of slave receivers and the 2-way protocol. Note that ‘ACK’ means

acknowledgement packet and ‘NACK’ means negative-acknowledgement packet.

Character Set

When transmitting data via the LoRa radios, it needs to be encoded into bytes, so I will have
to use a specific chosen character set. The chosen character set needs to be 8 bit because
the SSDV program encodes data into packets of 256 bytes and I wish to transmit one packet
per transmission. Additionally, the character set needs to be compatible with existing HAB
software which use extended-ASCII. The character set I shall use will be ISO-8859-1 for it
fulfils all the requirements and is included on most systems with most languages having
built-in functions that can encode strings in it. This is effectively extended ASCII so is
compatible with most existing HAB software.

Dl-Fldigi Interface

Further discussions with members of the UKHAS led me to the conclusion that it would be a
suitable extension to interface with the already commonly used (by UKHAS members) dl-
fldigi software which is used to decode RTTY. This results in my software effectively being an
all-round HAB toolkit, making it very useful to an enthusiast. I did, however, decide that this
should only be an extension as most enthusiasts are happy to have both programs open
simultaneously without an overall wrapper and this project is at its current stage a
prototype.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 16/133

Backup Tracker

Additionally, members of the UKHAS who I asked all wanted to have RTTY transmitted by
the payload as well as an emergency backup tracking method due to it being so robust and
reliable. Because of this, as the RTTY typically runs at 434MHz, I would thus need to use
868MHz for the LoRa. The IRC log for this is shown in figure 11. It might be sensible to
disable the RTTY for the duration of the payload’s receive cycle as although the RTTY is
running at a different frequency than the LoRa the two frequencies are indeed harmonically
related, resulting in possible interference. Having done some research and testing with an
RTTY tracker running from the same payload, I have decided to instead run a separate
payload separated by several metres from the 2-way payload in order to limit interference.
For this I will use my well-tested tracker from my previous flights which I know to work well.
Hence, the two-way payload software will not need to transmit RTTY as well as LoRa.

Figure 11 - IRC log showing discussion of backup RTTY tracker. Note that the final comment by mfa298 is regarding a

payload that was lost due to the failure of its single tracker.

Maximizing Link Budget

In the past, members of the UKHAS have managed only limited 2-way communications, they
have successfully transmitted a packet to the payload in the event that image packets are
missed requesting that they are retransmitted. These used high gain transmitting antennas
and the software was written in Python. I spoke to David Akerman, who wrote this software
and he has confirmed that he has had reasonable success with it in the past using a
relatively simple antenna as well as with a high gain directional antenna.

A screenshot of an email from David Akerman is shown in figure 2, following this and
discussion on the IRC I have concluded that I shall use the 500mW license-exempt band (see
fig. 6) to transmit up to my payload as this will provide a greater link budget and this will
make the 2-way communications much stronger, however, the LoRa module is only 100mW
at its maximum so this will be my maximum output, however, the 500mW band is still the
only band in which I can use this power output on the transmitter (using the 500mW band
was suggested by a user on the IRC, see fig. 9). Furthermore, Dave suggests in his email to
optimise the LoRa parameters for best link budget, typically a spreading factor of 7 has been
used with a 250kHz bandwidth for high data-rate long-range communications from HAB to
payload, however, for payload to HAB I intend to use a lower bandwidth to maximize
resistance to interference and increase link budget, a lower bandwidth means that the total
power output is spread over a smaller section of the radio spectrum. This should help
alleviate the issues created due to the large listening footprint of the airborne payload that
Dave mentions in his email.

Authentication

I will be sending transmissions from the ground station that could, if used incorrectly,
sabotage my flight, for example, sending the console command sudo halt would achieve

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 17/133

that. Because of this, I feel that my packets should be some way secured, encrypting would
be one method of doing this, however, I am not sending sensitive data so it seems
unnecessary. An alternative would be using a sort of ‘salt’ like those used in salted hashes
when storing passwords in databases, by this I mean that when configuring the payload the
user would need to set a ‘salt’ or key which will be included in the calculation of the
checksum but not actually transmitted, that way, on the receiving end the software could
append the same key to the received packet and calculate the checksum, if the checksums
match then we know both that the data is correct and has come from an authorised source.

Conclusion

In conclusion, as discussed, my target users are members of the UKHAS who would find it
useful to see basic diagnostic information about an airborne payload such as battery voltage
and internal temperature in order to detect issues, without having to include that in their
standard telemetry format; members also expressed the desire to have the ability to reboot
the entire Pi, making the point that the software should be configurable to start when the Pi
boots, this is all in order to fix potential runtime issues; it was also pointed out that the
payload software should not continue to wait if no packets are received from the ground as
this could result in the payload going silent, it should time out, this is to prevent lost flights;
several members also expressed the need to have multiple receivers and transmitters to
maximize the range of the 2-way communications as discussed above, however, as this
project is a prototype I think this should be considered as a future extension to the main
project, simply achieving two way communications with the payload from a single ground
station will be sufficient proof of concept. It was also noted that if there were no 2-way
communications packets to send then the payload should just transmit standard telemetry
strings following the standard UKHAS format (see figure 13 or for more information see:
https://ukhas.org.uk/communication:protocol), 2-way packets should be in some way
distinct from standard telemetry strings, perhaps a specific prefix should be used, rather
than the standard $$ used by the UKHAS strings.

Figure 12 - Showing a small snippet of my discussion with members of the UKHAS about potential features for the system.

Figure 13 - Image showing UKHAS protocol standards.

Specification

Ground Station Controller

1. The transceiver controller should:
a. Provide the user with a clear front-end.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 18/133

i. This need not be usable by a naïve user, as this software is aimed at
experienced radio operators and high altitude balloon enthusiasts;
this hobby requires a certain amount of technical knowledge on the
subject matter.

ii. The UI should function on a touchscreen, as the Pi used will be using a
touchscreen for the interface.

iii. The UI should provide the following features: current telemetry
display; current image display; transmission log; remote console;
control interface; configuration tab.

b. Provide a configuration file which allows the user to set the callsign,
transmission frequency and bandwidth, the receiving frequency and
bandwidth, the error coding rate, the spreading factor, the transmission
power and whether the payload is using explicit packet headers. The user
should also be able to set the key for 2-way packet authentication.

c. Allow normal LoRa receiving using an 868MHz module or a 434MHz module.
i. This is done by awaiting the DIO0 pin to go high, then reading the

contents of the LoRa FIFO.
ii. LoRa modules are interfaced with SPI so this will require an SPI

wrapper to be developed which handles all LoRa functions needed for
the project.

d. Decode SSDV image packets and display on the graphical interface, also
forward SSDV image packets to the habhub servers.

i. SSDV can be decoded using a freely available library developed by a
member of the high altitude ballooning community called fsphil.

ii. SSDV is encoded by the library into 256 byte packets, these can be
decoded individually so if a packet is lost most of the image can still
be seen.

e. Parse telemetry, ignoring those with failed checksums or incomplete data
and showing the relevant data on the telemetry display.

f. Log all received packets to a file with a timestamp.
g. Switch to transmit mode after receiving a packet from the payload stating

that it is entering listening mode and send any 2-way communication packets
that are queued.

i. Packets will be queued by the user when they request that an action
be completed by the payload.

h. Allow the user to queue packets for transmission by either clicking one of the
command buttons in the control menu or by sending a remote console
command.

i. Allow two-way communication with the airborne payload as described
below.

i. Two-way communication should be initialised by the sending of a
packet by the payload stating that it has begun waiting for
transmissions from the ground.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 19/133

ii. The ground station should then switch to transmit mode and move to
the transmit frequency and bandwidth.

iii. The ground station should then send a fixed number of its queued
packets.

iv. The payload should return to transmit mode after not receiving any
packets for a set duration of time, or after receiving the correct
number of packets.

v. Each packet should have a consecutive ID; the ID will reset to zero at
the start of each transmit cycle.

vi. All packets involved in two-way communications should be prefixed
with an identifier so that they are not mistaken for standard
telemetry or SSDV.

vii. The user should be able to control basic airborne operation such as
toggling image transmission.

viii. The user should have remote shell/telnet style access and be able to
reboot the payload in an emergency debugging attempt.

ix. The user should be able to request diagnostics of the payload e.g.
number of pictures stored or output from sensors, there should also
be a telemetry log, as telemetry data will be transmitted regularly as
part of 2-way communications to maintain accurate location.

x. The ground station should return to the receiving frequency and
bandwidth once the transmit cycle is over.

j. If the user has configured their payload on the web portal, the ground station
should be able to, given the payload callsign, download the payload
configuration and write the configuration file for the user. The user will, of
course, have to enter the key themselves.

k. Allow the user to toggle uploading data to the server (effectively allow
‘offline mode’ for testing).

Server

2. The server should:
a. Wait for telemetry and SSDV data to be received and then forward this data

to habhub.
b. Provide a means to export 2-way communications data in CSV format from

the web portal.
c. Allow users to view a live log of telemetry packets and 2-way packets

received by the server, also indicating when an image packet is received.
d. Provide a web portal to allow users to configure their payload and add it to

the database.
i. The web portal should have a similar graphical design to the habhub

website.

Payload Software

3. The payload software should:

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 20/133

a. Transmit standard telemetry and SSDV on LoRa.
i. In that the LoRa should transmit standard telemetry and SSDV for the

duration of its transmit cycle which is not taken up by 2-way packets.
ii. This is again going to require an SPI interface with the LoRa radio.

b. Have a configuration file functioning in the same way as that of the ground
station.

c. Allow the 2-way communications to function as described in section 1,
allowing the user to view diagnostics, access shell remotely, reboot, control
transmission mode, etc.

i. Remote mode is, as described, using LoRa in a cycle of transmit and
receive.

ii. A standardised packet format will be designed in the design section of
the project.

iii. The LoRa radio should be used to transmit for a given number of 2-
way packets, followed by the telemetry and SSDV packets and ending
with a packet stating that the payload is about to begin receiving
instructing the ground station to transmit queued packets.

iv. It should then wait to receive the fixed number of packets that will be
send by the ground station. It should time out after a short while if it
receives nothing.

v. It should then return to transmission.
vi. The payload should be able to handle any 2-way packets sent to it

from the ground station, and it should queue appropriate responses
to its transmit queue. For example, it should execute the command
given in a shell command packet and transmit the resulting output.

d. Add all packets which are required to be transmitted to a queue so that they
can be sent in required order.

e. Read from the GPS regularly, updating the current telemetry data so that the
most up-to-date telemetry is transmitted each cycle. Additionally, it should
clear the serial cache after reading a location fix from the radio as otherwise
the buffer will fill up with old location fixes.

f. Take images at fixed intervals using the Raspberry Pi camera module.
g. Should be designed to continue functioning without failure under unforeseen

circumstances.

So, to summarise, the project should encompass three modules: the controller module,
responsible for both receiving standard telemetry from the payload and transmitting and
receiving 2-way communication packets, as well as communicating with the central server
to handle logging and packet forwarding (to habhub); the server which is responsible for
logging all data and storing in a database configuration data for payloads; and the payload
software responsible for operating the payload and also transmitting to and receiving from
the ground station(s) as well as taking pictures and maintaining an accurate location fix for
the telemetry.

Name: Sam Sully Candidate Number: 5740 Centre Number: 68349

Project Icarus HAB 2-Way Communications 21/133

Potential Programming Solutions :

Java

I could use Java with the Pi4J library which provides SPI, DIO and RS232 APIs. This would
mean I only have to use a single library. Additionally, an Oracle Java Runtime Environment is
in available in the Pi repositories by default (see: https://www.raspberrypi.org/blog/oracle-
java-on-raspberry-pi/) and is installed by default on the latest version of Raspbian.
Additionally, this allows me to use Java Swing or JavaFX for the development of the GUI
which would provide excellent ease of development, though I am aware that there can be
some issues with JavaFX on Raspbian. Additionally, an object-oriented approach will be
sensible as I’m writing an interactive program with mutable states. Additionally, as habitat
uses an HTTP interface, I could use any of the myriad of HTTP libraries available for Java, for
example the Apache HTTP Client library or the built-in HTTPConnection library.

Python

I could use Java with spidev for the SPI interface, the integrated GPIO library for DIO and
pyserial for the serial interface. These are both very easy to use, however, pyserial has a few
known bugs which can result in a read operation hanging indefinitely. The ‘Requests’ (see:
http://docs.python-requests.org/en/master/) library is an extremely easy to use HTTP
library. Python is also a very easy programming language to use and is often far more
flexible than other languages. Additionally I could use Tkinter to develop my GUI. Python is
also the most used language on Raspberry Pis.

C

I could use C and use the WiringPi library to access the serial, DIO and SPI interfaces. Then I
could use a library like cURL to for networking. Furthermore, I could use ncurses to develop
a command-line GUI. C is a more complex programming language but would provide a
significant performance gain. However, as this performance gain will be unnecessary using C
would be unnecessary.

VB.NET

VB.NET would probably not be suitable for this project because although it is possible to
access the I/O devices of the Pi, VB.NET is certainly not designed with these in mind.

Chosen Solution

I will use Java and Pi4J to develop my project because Java’s in-built Java Swing graphics
libraries will make the development of my GUI simpler; the Pi4J library provides all the I/O
capabilities that I need for my project. I will not use Python due to the potential issues with
pyserial; I will not use C as the only reason to do so would be for performance which is not
necessary here and adds unnecessary complexity; VB.NET is, as I have mentioned,
unsuitable for this project. Additionally, I should note that Java has easy built-in functions
for converting strings to and from ISO-8859-1 byte arrays.

